We introduce a novel unit-time ordinary differential equation (ODE) flow called the preconditioned F\"{o}llmer flow, which efficiently transforms a Gaussian measure into a desired target measure at time 1. To discretize the flow, we apply Euler's method, where the velocity field is calculated either analytically or through Monte Carlo approximation using Gaussian samples. Under reasonable conditions, we derive a non-asymptotic error bound in the Wasserstein distance between the sampling distribution and the target distribution. Through numerical experiments on mixture distributions in 1D, 2D, and high-dimensional spaces, we demonstrate that the samples generated by our proposed flow exhibit higher quality compared to those obtained by several existing methods. Furthermore, we propose leveraging the F\"{o}llmer flow as a warmstart strategy for existing Markov Chain Monte Carlo (MCMC) methods, aiming to mitigate mode collapses and enhance their performance. Finally, thanks to the deterministic nature of the F\"{o}llmer flow, we can leverage deep neural networks to fit the trajectory of sample evaluations. This allows us to obtain a generator for one-step sampling as a result.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月24日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年12月24日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
31+阅读 · 2021年6月30日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员