We introduce a novel unit-time ordinary differential equation (ODE) flow called the preconditioned F\"{o}llmer flow, which efficiently transforms a Gaussian measure into a desired target measure at time 1. To discretize the flow, we apply Euler's method, where the velocity field is calculated either analytically or through Monte Carlo approximation using Gaussian samples. Under reasonable conditions, we derive a non-asymptotic error bound in the Wasserstein distance between the sampling distribution and the target distribution. Through numerical experiments on mixture distributions in 1D, 2D, and high-dimensional spaces, we demonstrate that the samples generated by our proposed flow exhibit higher quality compared to those obtained by several existing methods. Furthermore, we propose leveraging the F\"{o}llmer flow as a warmstart strategy for existing Markov Chain Monte Carlo (MCMC) methods, aiming to mitigate mode collapses and enhance their performance. Finally, thanks to the deterministic nature of the F\"{o}llmer flow, we can leverage deep neural networks to fit the trajectory of sample evaluations. This allows us to obtain a generator for one-step sampling as a result.
翻译:暂无翻译