Recent studies on adversarial examples expose vulnerabilities of natural language processing (NLP) models. Existing techniques for generating adversarial examples are typically driven by deterministic heuristic rules that are agnostic to the optimal adversarial examples, a strategy that often results in attack failures. To this end, this research proposes Fraud's Bargain Attack (FBA) which utilizes a novel randomization mechanism to enlarge the search space and enables high-quality adversarial examples to be generated with high probabilities. FBA applies the Metropolis-Hasting sampler, a member of Markov Chain Monte Carlo samplers, to enhance the selection of adversarial examples from all candidates proposed by a customized stochastic process that we call the Word Manipulation Process (WMP). WMP perturbs one word at a time via insertion, removal or substitution in a contextual-aware manner. Extensive experiments demonstrate that FBA outperforms the state-of-the-art methods in terms of both attack success rate and imperceptibility.


翻译:最近关于对抗性实例的研究暴露了自然语言处理模式的脆弱性。现有的生成对抗性实例的技术通常受确定性超常规则的驱动,这些规则对于最佳对抗性实例具有不可知性,而这种战略往往导致攻击失败。为此,本研究提出了欺诈性对抗(FBA),它利用一种新颖的随机化机制扩大搜索空间,使高质量的对抗性实例能够以高概率生成。FBA采用Meopolis-Hasting样板器,这是Markov Caincle Monte Carlo采样器的成员,以加强从所有候选人中选择对抗性实例,而这种选择是由我们称之为WMP(WMP)的定制随机化程序(WMP)提出的。WMP通过插入、删除或以环境觉悟的方式替换而时一个单词。广泛的实验表明,FBA在攻击成功率和不易感知性两方面都超越了最先进的方法。</s>

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2020年12月10日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员