Open-domain dialog systems have a user-centric goal: to provide humans with an engaging conversation experience. User engagement is one of the most important metrics for evaluating open-domain dialog systems, and could also be used as real-time feedback to benefit dialog policy learning. Existing work on detecting user disengagement typically requires hand-labeling many dialog samples. We propose HERALD, an annotation efficient framework that reframes the training data annotation process as a denoising problem. Specifically, instead of manual labeling training samples, we first use a set of labeling heuristics to automatically label training samples. We then denoise the weakly labeled data using Shapley algorithm. Finally, we use the denoised data to train a user engagement detector. Our experiments show that HERALD improves annotation efficiency significantly and achieves 86% user disengagement detection accuracy in two dialog corpora.
翻译:开放域对话系统有一个以用户为中心的目标: 向人类提供互动经验。 用户参与是评价开放域对话系统的最重要衡量标准之一, 也可以用作实时反馈, 以有利于对话政策学习。 现有的检测用户退出工作通常需要手贴许多对话框样本的标签。 我们建议HERALD, 这是一种说明性高效框架, 将培训数据批注程序重新设定为解除问题。 具体地说, 我们首先使用一套标签超链接来自动标注培训样本。 然后, 我们用Shapley 算法将标签薄弱的数据封住。 最后, 我们使用取消名的数据来培训用户参与检测器。 我们的实验显示, HERALD大大提高了批注效率,并在两个对话框中实现了86%的用户退出检测精度。