We derive simplified sphere-packing and Gilbert--Varshamov bounds for codes in the sum-rank metric, which can be computed more efficiently than previous ones. They give rise to asymptotic bounds that cover the asymptotic setting that has not yet been considered in the literature: families of sum-rank-metric codes whose block size grows in the code length. We also provide two genericity results: we show that random linear codes achieve almost the sum-rank-metric Gilbert--Varshamov bound with high probability. Furthermore, we derive bounds on the probability that a random linear code attains the sum-rank-metric Singleton bound, showing that for large enough extension fields, almost all linear codes achieve it.


翻译:我们得到简化的球体包装和吉尔伯特-瓦尔沙莫夫(Gilbert-Varshamov)的代码总标准线,可以比以前更高效地计算。它们产生无药可治的界限,覆盖文献尚未考虑的无药可治环境:区块大小在代码长度上增长的平面计量码的家属。我们还提供了两个通用结果:我们显示随机线性代码几乎达到基尔伯特-瓦尔沙莫夫(Gilbert-Varshamov)的临界值,而且概率很高。此外,我们从随机线性代码达到单顿平面编码的概率上得出界限,表明对于足够大的扩展域来说,几乎所有线性代码都达到了。

0
下载
关闭预览

相关内容

最新「图机器学习药物发现」综述论文,22页pdf245篇文献
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月20日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月20日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员