In image denoising networks, feature scaling is widely used to enlarge the receptive field size and reduce computational costs. This practice, however, also leads to the loss of high-frequency information and fails to consider within-scale characteristics. Recently, dynamic convolution has exhibited powerful capabilities in processing high-frequency information (e.g., edges, corners, textures), but previous works lack sufficient spatial contextual information in filter generation. To alleviate these issues, we propose to employ dynamic convolution to improve the learning of high-frequency and multi-scale features. Specifically, we design a spatially enhanced kernel generation (SEKG) module to improve dynamic convolution, enabling the learning of spatial context information with a very low computational complexity. Based on the SEKG module, we propose a dynamic convolution block (DCB) and a multi-scale dynamic convolution block (MDCB). The former enhances the high-frequency information via dynamic convolution and preserves low-frequency information via skip connections. The latter utilizes shared adaptive dynamic kernels and the idea of dilated convolution to achieve efficient multi-scale feature extraction. The proposed multi-dimension feature integration (MFI) mechanism further fuses the multi-scale features, providing precise and contextually enriched feature representations. Finally, we build an efficient denoising network with the proposed DCB and MDCB, named ADFNet. It achieves better performance with low computational complexity on real-world and synthetic Gaussian noisy datasets. The source code is available at https://github.com/it-hao/ADFNet.
翻译:在图像淡化网络中,特质缩放被广泛用于扩大可接收的字段大小和降低计算成本。但是,这种做法还导致高频信息丢失,未能考虑内部特点。最近,动态混进在处理高频信息方面表现出了强大的能力(例如边缘、角、纹理),但以前的工作在过滤生成过程中缺乏足够的空间背景信息。为了缓解这些问题,我们提议利用动态混进来改进高频和多尺度特性的学习。具体地说,我们设计了一个空间增强的内核生成模块(SEKG),以改善动态变异,使空间背景信息学习的计算复杂性非常低。根据SEKG模块,我们提出了动态混进式混进区(DCB)和多尺度动态背景背景背景背景信息。我们提议的多频集集集集成(以动态混集和跳过连接的方式保存低频频信息。后者利用共享的适应性动态内核内核流以及进一步调变异化的想法,以便实现高效的多尺度的多层次数据提取。我们提议的多层次网络的多层次、多层次化、多层次化、多层次化、多层次化、多层次化、多层次化、多层次化、多层次化、多层次化、多层次化、多层次化、多层次化、多层次化、多层次化、多层次化、多层次化、结构、结构、多层次化、结构、多层次、多层次、多层次化、多层次化、多层次、多层次、多层次、多层次、多层次、多层次、多层次、多层次、多层次化、多层次化、多层次化、多层次化、多层次化、多层次化、多层次、多层次、多层次、多层次、多层次、多层次、多层次、多层次、多层次、多层次、多层次、结构、多层次、多层次、多层次、多层次、多层次、多层次、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、多层次、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、结构、多层次、多层次、多层次、多层次、多层次、多层次化、结构、多层次、多层次、多层次、结构、结构、结构、多层次、