Off-the-shelf single-stage multi-person pose regression methods generally leverage the instance score (i.e., confidence of the instance localization) to indicate the pose quality for selecting the pose candidates. We consider that there are two gaps involved in existing paradigm:~1) The instance score is not well interrelated with the pose regression quality.~2) The instance feature representation, which is used for predicting the instance score, does not explicitly encode the structural pose information to predict the reasonable score that represents pose regression quality. To address the aforementioned issues, we propose to learn the pose regression quality-aware representation. Concretely, for the first gap, instead of using the previous instance confidence label (e.g., discrete {1,0} or Gaussian representation) to denote the position and confidence for person instance, we firstly introduce the Consistent Instance Representation (CIR) that unifies the pose regression quality score of instance and the confidence of background into a pixel-wise score map to calibrates the inconsistency between instance score and pose regression quality. To fill the second gap, we further present the Query Encoding Module (QEM) including the Keypoint Query Encoding (KQE) to encode the positional and semantic information for each keypoint and the Pose Query Encoding (PQE) which explicitly encodes the predicted structural pose information to better fit the Consistent Instance Representation (CIR). By using the proposed components, we significantly alleviate the above gaps. Our method outperforms previous single-stage regression-based even bottom-up methods and achieves the state-of-the-art result of 71.7 AP on MS COCO test-dev set.
翻译:现成的单阶段多人制回归方法通常会利用实例评分(即实例本地化的信心)来显示选择组合候选人的构成质量。 我们认为,现有范例中存在两个差距: ~ 1 ; 实例评分与构成回归质量不完全相关。 ~ 2, 用于预测实例评分的实例特征代表法没有明确地编码结构构成信息以预测构成回归质量的合理得分。 为解决上述问题, 我们提议学习显示回归质量认知表示法。 具体来说, 对于第一个缺口, 而不是使用先前的系统回归表示质量质量质量质量。 我们认为, 现有模式中存在两个缺口: : ~ 1 ; 实例评分与构成回归质量的质量不完全相关。 我们首先引入“ 一致性评分” (C), 将构成回归质量评分与背景的可信度混为一等。 为了填补第二个缺口, 我们甚至将“ 降低” Q- 列表” 和“ Econcocread ” 上的拟议 Q- 排序, 包括“ KIM ” 的“ 键点” 。