This paper surveys machine-learning-based super-resolution reconstruction for vortical flows. Super resolution aims to find the high-resolution flow fields from low-resolution data and is generally an approach used in image reconstruction. In addition to surveying a variety of recent super-resolution applications, we provide case studies of super-resolution analysis for an example of two-dimensional decaying isotropic turbulence. We demonstrate that physics-inspired model designs enable successful reconstruction of vortical flows from spatially limited measurements. We also discuss the challenges and outlooks of machine-learning-based super-resolution analysis for fluid flow applications. The insights gained from this study can be leveraged for super-resolution analysis of numerical and experimental flow data.
翻译:本文调查基于机械学习的超分辨率重建 vortical 流。 超级分辨率解析旨在从低分辨率数据中找到高分辨率流流场,一般是用于图像重建的一种方法。 除了调查最近各种超分辨率应用外,我们还提供了超分辨率分析的案例研究,以作为二维衰变等热带动荡的例子。 我们证明物理学启发模型的设计有助于成功重建空间有限测量的浮质流。 我们还讨论了基于机器学习的流体应用超分辨率分析的挑战和前景。 从这项研究中获得的见解可用于对数字和实验流数据进行超分辨率分析。