A moment function is called doubly robust if it is comprised of two nuisance functions and has the desired property that the estimator based on it is a consistent estimator of the target parameter even if one of the nuisance functions is misspecified. A common approach for obtaining such a moment function is based on using the influence function (IF) of the parameter of interest. Robins et al. (2008) introduced a large class of doubly robust IFs. However, that class does not include the IF of functionals for which the nuisance functions are solutions to integral equations. Such functionals are particularly important in the field of causal inference, specifically in the recently proposed proximal inference framework of (Miao et al., 2018; Tchetgen Tchetgen et al., 2020), which allows for estimating the average causal effect when unobserved confounders are present in the system. Motivated by the proximal inference framework, in this paper, we first extend the class of Robins et al. to include doubly robust IFs in which the nuisance functions are solutions to integral equations. Then we demonstrate that the double robustness property of these IFs can be leveraged to construct estimating equations for the nuisance functions, which enables us to solve the integral equations without resorting to parametric models. The main idea is to choose each nuisance function such that it minimizes the dependency of the expected value of the moment function to the other nuisance function. We frame this idea as a minimax optimization problem and use RKHSes as the function spaces. We provide convergence rates for the nuisance functions and conditions required for asymptotic linearity of the estimator of the functional of interest. The experiment results demonstrate that our proposed methodology leads to robust and high-performance estimators for average causal effect in the proximal inference framework.


翻译:如果一个时钟功能由两个干扰功能组成, 且具有预期属性, 以该函数为基础的估计值是目标参数的一致估算值, 即使其中的一个干扰函数定义错误。 获取此时钟函数的通用方法是基于使用利益参数的影响力函数(IF) 。 Robins 等人(2008年) 引入了一个大等级的双倍强的综合框架。 但是, 该类别不包括功能的IF, 其中的干扰功能是整体方程式的解决方案。 这种功能在因果变异领域尤为重要, 特别是在最近提议的( MIA 等人, 2018年; Tchetgen 等人, 2020年) 的预测值框架中, 获取此瞬间函数的默认值, 从而可以估算系统内未观察到的共振动者的平均因果关系。 在本文中, 我们首先扩展了Robins 等人的类别。 在因果变异函数中, 包括双倍强的 IFS, 其中, 度的稳定性函数是稳健性的, 从而可以估算我们内部方程式的公式的预期值功能, 用于构建一个整体方程式。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月22日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2020年12月10日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员