Approximating complex probability densities is a core problem in modern statistics. In this paper, we introduce the concept of Variational Inference (VI), a popular method in machine learning that uses optimization techniques to estimate complex probability densities. This property allows VI to converge faster than classical methods, such as, Markov Chain Monte Carlo sampling. Conceptually, VI works by choosing a family of probability density functions and then finding the one closest to the actual probability density -- often using the Kullback-Leibler (KL) divergence as the optimization metric. We introduce the Evidence Lower Bound to tractably compute the approximated probability density and we review the ideas behind mean-field variational inference. Finally, we discuss the applications of VI to variational auto-encoders (VAE) and VAE-Generative Adversarial Network (VAE-GAN). With this paper, we aim to explain the concept of VI and assist in future research with this approach.
翻译:相近的复杂概率密度是现代统计的一个核心问题。在本文中,我们引入了变相推断概念(VI),这是使用优化技术来估计复杂概率密度的机器学习中常用的一种方法。这种属性使得六比典型方法(如Markov 链条蒙特卡洛取样)的趋同速度更快。从概念上讲,六通过选择概率密度函数的组合来工作,然后找到与实际概率密度最接近的组合 -- -- 通常使用Kullback-Libel(KL)差异作为优化衡量标准。我们引入了证据低重,以利得利得可以比较地计算概率密度,我们审视了平均场变异推断背后的想法。最后,我们讨论了六对变式自动计算器(VAE)和VAE-Generative Adversarial网络(VAE-GAN)的应用。我们用这份文件来解释六的概念,并协助今后研究这一方法。