Many financial and economic variables, including financial returns, exhibit nonlinear dependence, heterogeneity and heavy-tailedness. These properties may make problematic the analysis of (non-)efficiency and volatility clustering in economic and financial markets using traditional approaches that appeal to asymptotic normality of sample autocorrelation functions of returns and their squares. This paper presents new approaches to deal with the above problems. We provide the results that motivate the use of measures of market (non-)efficiency and volatility clustering based on (small) powers of absolute returns and their signed versions. We further provide new approaches to robust inference on the measures in the case of general time series, including GARCH-type processes. The approaches are based on robust $t-$statistics tests and new results on their applicability are presented. In the approaches, parameter estimates (e.g., estimates of measures of nonlinear dependence) are computed for groups of data, and the inference is based on $t-$statistics in the resulting group estimates. This results in valid robust inference under heterogeneity and dependence assumptions satisfied in real-world financial markets. Numerical results and empirical applications confirm the advantages and wide applicability of the proposed approaches.


翻译:许多金融和经济变量,包括金融回报、显示非线性依赖性、异质性和高度尾细化。这些特性可能会对使用传统方法分析经济和金融市场(非)效率和波动集群造成问题,传统方法要求对回报及其正方的抽样自动关系功能进行无症状的正常性分析。本文件提出了处理上述问题的新方法。我们提供了根据绝对回报及其已签字版本的(小)能力,采用市场(非)效率和波动集群计量方法的结果。我们还提供了新的方法,对包括GARCH型流程在内的一般时间序列中的措施进行稳健的推断。这些方法以强有力的美元-美元统计测试为基础,并介绍了其适用性的新结果。在方法中,参数估计(如非线性依赖性计量的估计数)是按数据组计算的,其推论依据是绝对回报及其已签名版本的(小)数据组估计数。我们进一步提供了新的方法,以可靠地推断了一般时间序列中的措施,包括GARCHH型程序。这些方法基于稳健的美元-美元统计测试和依赖性假设,确认了现实世界金融市场中满足了广泛适用性做法的参数优势和预期结果。

0
下载
关闭预览

相关内容

图嵌入模型综述
专知会员服务
87+阅读 · 2022年1月17日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
图嵌入模型综述
专知会员服务
87+阅读 · 2022年1月17日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员