Time-synchronized state estimation for reconfigurable distribution networks is challenging because of limited real-time observability. This paper addresses this challenge by formulating a deep learning (DL)-based approach for topology identification (TI) and unbalanced three-phase distribution system state estimation (DSSE). Two deep neural networks (DNNs) are trained to operate in a sequential manner for implementing DNN-based TI and DSSE for systems that are incompletely observed by synchrophasor measurement devices (SMDs). A data-driven approach for judicious measurement selection to facilitate reliable TI and DSSE is also provided. Robustness of the proposed methodology is demonstrated by considering realistic measurement error models for SMDs as well as presence of renewable energy. A comparative study of the DNN-based DSSE with classical linear state estimation (LSE) indicates that the DL-based approach gives better accuracy with a significantly smaller number of SMDs
翻译:由于实时可观察性有限,对可重新整合的分销网络进行时间同步状态估计具有挑战性,因为实时可观测性有限,因此对可重新整合的分销网络进行时间同步状态估计具有挑战性。本文件通过为地形识别(TI)和不平衡的三阶段分布系统国家估计(DSSE)制定一种基于深度学习(DSSE)的基于DL(DNN(DNNN)的深度神经网络(DNN(DNN)(DNN(DNN)(DNN)(DN)(DN))和DSSE(DSE(D)(SDMD(SD)(未完全通过同步测量设备观测到的系统))进行连续运行培训,从而应对这一挑战。本文件还提供了一种数据驱动的明智计量选择方法,以促进可靠的TI和DSSE(DSE)(也提供了一种数据驱动方法)。通过考虑现实的SMDMD(S)的误差模型以及可再生能源的存在,可以证明拟议方法的强性。对基于DNN(DSE)(基于DSE)(LSE)(以经典线性估算的)的比较)的比较研究表明,DL(DMDMDMD)方法具有更精确性。