In a code-switched (CS) scenario, the use of spoken language diarization (LD) as a pre-possessing system is essential. Further, the use of implicit frameworks is preferable over the explicit framework, as it can be easily adapted to deal with low/zero resource languages. Inspired by speaker diarization (SD) literature, three frameworks based on (1) fixed segmentation, (2) change point-based segmentation and (3) E2E are proposed to perform LD. The initial exploration with synthetic TTSF-LD dataset shows, using x-vector as implicit language representation with appropriate analysis window length ($N$) can able to achieve at per performance with explicit LD. The best implicit LD performance of $6.38$ in terms of Jaccard error rate (JER) is achieved by using the E2E framework. However, considering the E2E framework the performance of implicit LD degrades to $60.4$ while using with practical Microsoft CS (MSCS) dataset. The difference in performance is mostly due to the distributional difference between the monolingual segment duration of secondary language in the MSCS and TTSF-LD datasets. Moreover, to avoid segment smoothing, the smaller duration of the monolingual segment suggests the use of a small value of $N$. At the same time with small $N$, the x-vector representation is unable to capture the required language discrimination due to the acoustic similarity, as the same speaker is speaking both languages. Therefore, to resolve the issue a self-supervised implicit language representation is proposed in this study. In comparison with the x-vector representation, the proposed representation provides a relative improvement of $63.9\%$ and achieved a JER of $21.8$ using the E2E framework.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员