Deep learning methods typically depend on the availability of labeled data, which is expensive and time-consuming to obtain. Active learning addresses such effort by prioritizing which samples are best to annotate in order to maximize the performance of the task model. While frameworks for active learning have been widely explored in the context of classification of natural images, they have been only sparsely used in medical image segmentation. The challenge resides in obtaining an uncertainty measure that reveals the best candidate data for annotation. This paper proposes Test-time Augmentation for Active Learning (TAAL), a novel semi-supervised active learning approach for segmentation that exploits the uncertainty information offered by data transformations. Our method applies cross-augmentation consistency during training and inference to both improve model learning in a semi-supervised fashion and identify the most relevant unlabeled samples to annotate next. In addition, our consistency loss uses a modified version of the JSD to further improve model performance. By relying on data transformations rather than on external modules or simple heuristics typically used in uncertainty-based strategies, TAAL emerges as a simple, yet powerful task-agnostic semi-supervised active learning approach applicable to the medical domain. Our results on a publicly-available dataset of cardiac images show that TAAL outperforms existing baseline methods in both fully-supervised and semi-supervised settings. Our implementation is publicly available on https://github.com/melinphd/TAAL.
翻译:深层学习方法通常取决于标签数据的供应情况,这种数据费用昂贵,需要花费时间获取。积极学习通过优先选择哪些样本最适于说明任务模式,从而最大限度地提高任务模式的绩效,从而解决了这种努力。虽然积极学习的框架在自然图像分类方面得到了广泛探讨,但在医学图像分割方面却很少使用。挑战在于获得一种不确定性的衡量标准,以显示最佳候选数据进行批注。本文件提议采用新的半监督的半监督积极学习方法,进行分解,利用数据转换提供的不确定性信息。我们的方法在培训过程中采用交叉增强一致性的方法,并推断既用半监督的方式改进模型学习,又将最相关的无标签样本用于下一个注释。此外,我们的一致性损失使用经修改的JSPD版本来进一步改进模型性能。通过数据转换而不是在基于不确定性的战略中通常使用的外部模块或简易的双层软件,TAAL作为简单、但有力的工具在培训中应用交叉增强一致性一致性一致性,同时在公开应用的TAAL基准方法中,通过现有正版的局-SIMU-S-SUIS-S-SIM-SIM-SIM-S-SUI-SIM-SIR-SIM-SU IM-S-S-SUI-S-S-S-SUD-SUD-SUD-S-S-S-SUD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SUD-S-S-S-SUD-SUD-SD-I-I-I-I-I-I-I-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SD-I-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-