Deep learning techniques have made considerable progress in image inpainting, restoration, and reconstruction in the last few years. Image outpainting, also known as image extrapolation, lacks attention and practical approaches to be fulfilled, owing to difficulties caused by large-scale area loss and less legitimate neighboring information. These difficulties have made outpainted images handled by most of the existing models unrealistic to human eyes and spatially inconsistent. When upsampling through deconvolution to generate fake content, the naive generation methods may lead to results lacking high-frequency details and structural authenticity. Therefore, as our novelties to handle image outpainting problems, we introduce structural prior as a condition to optimize the generation quality and a new semantic embedding term to enhance perceptual sanity. we propose a deep learning method based on Generative Adversarial Network (GAN) and condition edges as structural prior in order to assist the generation. We use a multi-phase adversarial training scheme that comprises edge inference training, contents inpainting training, and joint training. The newly added semantic embedding loss is proved effective in practice.


翻译:在过去几年里,深层学习技术在图像油漆、恢复和重建方面取得了相当大的进展。图像油漆(又称图像外推)缺乏关注和实际的实现方法,因为大规模地区损失和不太合法的相邻信息造成的困难。这些困难使得大多数现有模型处理的外涂图像对人类眼睛不切实际,空间上不一致。当通过分解抽取以生成假内容时,幼稚的生成方法可能导致缺乏高频细节和结构真实性的结果。因此,作为我们处理图像外推问题的新手,我们先引入结构结构,作为优化生成质量的条件,并引入新的语义嵌入术语,以加强感性。我们提出了一种深层次的学习方法,其基础是基因对立网络(GAN)和条件边缘作为结构的先期,以便帮助下一代。我们使用了多阶段的对抗性培训计划,其中包括精锐的推断培训、修补培训内容和联合培训。新增加的语义嵌入损失在实践中证明是有效的。

1
下载
关闭预览

相关内容

图像修复(英语:Inpainting)指重建的图像和视频中丢失或损坏的部分的过程。例如在博物馆中,这项工作常由经验丰富的博物馆管理员或者艺术品修复师来进行。数码世界中,图像修复又称图像插值或视频插值,指利用复杂的算法来替换已丢失、损坏的图像数据,主要替换一些小区域和瑕疵。
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员