Point cloud completion concerns to predict missing part for incomplete 3D shapes. A common strategy is to generate complete shape according to incomplete input. However, unordered nature of point clouds will degrade generation of high-quality 3D shapes, as detailed topology and structure of unordered points are hard to be captured during the generative process using an extracted latent code. We address this problem by formulating completion as point cloud deformation process. Specifically, we design a novel neural network, named PMP-Net++, to mimic behavior of an earth mover. It moves each point of incomplete input to obtain a complete point cloud, where total distance of point moving paths (PMPs) should be the shortest. Therefore, PMP-Net++ predicts unique PMP for each point according to constraint of point moving distances. The network learns a strict and unique correspondence on point-level, and thus improves quality of predicted complete shape. Moreover, since moving points heavily relies on per-point features learned by network, we further introduce a transformer-enhanced representation learning network, which significantly improves completion performance of PMP-Net++. We conduct comprehensive experiments in shape completion, and further explore application on point cloud up-sampling, which demonstrate non-trivial improvement of PMP-Net++ over state-of-the-art point cloud completion/up-sampling methods.
翻译:用于预测不完全 3D 形状缺失部分的云端补缺问题 。 共同战略是根据不完全的投入生成完整形状 。 然而, 点云的不顺序性质将降解高质量 3D 形状的生成, 因为在基因化过程中很难用提取的隐含代码来捕捉详细的不顺序和点结构 。 我们用点云变形过程来解决这个问题。 具体地说, 我们设计了一个叫PMP- Net++的新型神经网络来模仿一个地球移动者的行为。 它会移动每个不完整输入点以获得完整的点云, 其中点移动路径(PMPs)的总距离应该是最短的。 因此, PMP- Net++ 预测每个点的独特 PMP 点在点移动距离的限制下是独特的 。 网络在点上学习一个严格和独特的对应的点, 从而提高预测的完整形状质量。 此外, 由于移动点严重依赖网络所学的点特征, 我们进一步引入一个变换增强的代表学习网络网络, 大大改进 PMP- Net++++ 的完成状态。 我们用全面实验 的云端建成, 。