In order to encode additional statistical information in data fusion and transfer learning applications, we introduce a generalized covariance constraint for the matching component analysis (MCA) transfer learning technique. We provide a closed-form solution to the resulting covariance-generalized optimization problem and an algorithm for its computation. We call the resulting technique -- applicable to both data fusion and transfer learning -- covariance-generalized MCA (CGMCA). We also demonstrate via numerical experiments that CGMCA is capable of meaningfully encoding into its maps more information than MCA.
翻译:为了在数据聚合和转移学习应用程序中编纂更多的统计资料,我们对匹配组件分析(MCA)传输学习技术实行普遍共变制约,为由此产生的共变通用优化问题提供封闭式解决办法,并使用算法进行计算。我们称由此产生的技术 -- -- 既适用于数据聚合又适用于转移学习 -- -- 共变通用MCA(CCA)。我们还通过数字实验表明,CGMCA能够将比MCA更多的信息有意义地写入其地图。