This paper proposes to generalize linear subdivision schemes to nonlinear subdivision schemes for curve and surface modeling by refining vertex positions together with refinement of unit control normals at the vertices. For each round of subdivision, new control normals are obtained by projections of linearly subdivided normals onto unit circle or sphere while new vertex positions are obtained by updating linearly subdivided vertices along the directions of the newly subdivided normals. Particularly, the new position of each linearly subdivided vertex is computed by weighted averages of end points of circular or helical arcs that interpolate the positions and normals at the old vertices at one ends and the newly subdivided normal at the other ends. The main features of the proposed subdivision schemes are three folds: (1) The point-normal (PN) subdivision schemes can reproduce circles, circular cylinders and spheres using control points and control normals; (2) PN subdivision schemes generalized from convergent linear subdivision schemes converge and can have the same smoothness orders as the linear schemes; (3) PN $C^2$ subdivision schemes generalizing linear subdivision schemes that generate $C^2$ subdivision surfaces with flat extraordinary points can generate visually $C^2$ subdivision surfaces with non-flat extraordinary points. Experimental examples have been given to show the effectiveness of the proposed techniques for curve and surface modeling.
翻译:本文建议,将线性子分类办法普遍适用于非线性曲线和表面建模的线性子分类办法,办法是通过精炼顶端或螺旋弧的端点加权平均值,同时完善顶端或螺旋弧的单位控制正常度。每轮子分类,通过预测在单位圆或球体上线性分解正常度的线性分解正常度,获得新的控制正常度常数,同时根据新分解正常度方向更新线性分解的脊椎新位置。特别是,每一线性分解的曲线顶端新位置是通过圆形或螺旋弧端端端点的加权平均值,同时对一个端的旧顶端和另一端的旧顶端的正常控制正常度进行中间划,通过预测获得新的控制正常状态。拟议的子脊椎方案的主要特征是三个折叠:(1) 点(PN) 圆性(PN) 圆性圆形圆形圆形圆形圆柱形和领域,使用控制正常的模型复制;(2) 从趋性线性线性分层组合的普通平坦性定的平流命令令与直线性美元;(3) AL性平面平面方案,以USC=25型平基平面图制的平面图制,可显示一般平面图制的平面图,以美元。