We propose a new model, independent linear Markov game, for multi-agent reinforcement learning with a large state space and a large number of agents. This is a class of Markov games with independent linear function approximation, where each agent has its own function approximation for the state-action value functions that are marginalized by other players' policies. We design new algorithms for learning the Markov coarse correlated equilibria (CCE) and Markov correlated equilibria (CE) with sample complexity bounds that only scale polynomially with each agent's own function class complexity, thus breaking the curse of multiagents. In contrast, existing works for Markov games with function approximation have sample complexity bounds scale with the size of the \emph{joint action space} when specialized to the canonical tabular Markov game setting, which is exponentially large in the number of agents. Our algorithms rely on two key technical innovations: (1) utilizing policy replay to tackle non-stationarity incurred by multiple agents and the use of function approximation; (2) separating learning Markov equilibria and exploration in the Markov games, which allows us to use the full-information no-regret learning oracle instead of the stronger bandit-feedback no-regret learning oracle used in the tabular setting. Furthermore, we propose an iterative-best-response type algorithm that can learn pure Markov Nash equilibria in independent linear Markov potential games. In the tabular case, by adapting the policy replay mechanism for independent linear Markov games, we propose an algorithm with $\widetilde{O}(\epsilon^{-2})$ sample complexity to learn Markov CCE, which improves the state-of-the-art result $\widetilde{O}(\epsilon^{-3})$ in Daskalakis et al. 2022, where $\epsilon$ is the desired accuracy, and also significantly improves other problem parameters.


翻译:我们提出一个新的模型, 独立的线性 Markov 游戏, 用于多试剂强化学习, 使用较大的状态空间和大量的代理商。 这是一个具有独立线性功能近效的Markov 游戏类别, 每个代理商都有自己的功能近似值, 被其他玩家的政策所忽略。 我们设计新的算法, 用于学习 Markov 粗略相关 equilibria (CCE) 和 Markov 相关 equilibria (CE), 其样本复杂度范围只能与每个代理商自身的功能类别复杂度成倍缩放, 从而打破多试剂的诅咒。 相反, 现有的 Markov 游戏中, 使用 线性 线性 样性 的复杂度 范围与\emphy{ 联合行动空间 的大小相匹配 。 我们的算法依赖于两个关键技术创新:(1) 利用政策重现, 解决多个代理商的不透明性, 和功能更接近性 ; (2) 将 学习 Markov 和 探索多级游戏中的 和探索性, 显示 直径性 正在 学习 学习 完全的 C- 或 。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
82+阅读 · 2022年7月16日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
126+阅读 · 2020年9月6日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员