Aligning users across networks using graph representation learning has been found effective where the alignment is accomplished in a low-dimensional embedding space. Yet, achieving highly precise alignment is still challenging, especially when nodes with long-range connectivity to the labeled anchors are encountered. To alleviate this limitation, we purposefully designed WL-Align which adopts a regularized representation learning framework to learn distinctive node representations. It extends the Weisfeiler-Lehman Isormorphism Test and learns the alignment in alternating phases of "across-network Weisfeiler-Lehman relabeling" and "proximity-preserving representation learning". The across-network Weisfeiler-Lehman relabeling is achieved through iterating the anchor-based label propagation and a similarity-based hashing to exploit the known anchors' connectivity to different nodes in an efficient and robust manner. The representation learning module preserves the second-order proximity within individual networks and is regularized by the across-network Weisfeiler-Lehman hash labels. Extensive experiments on real-world and synthetic datasets have demonstrated that our proposed WL-Align outperforms the state-of-the-art methods, achieving significant performance improvements in the "exact matching" scenario. Data and code of WL-Align are available at https://github.com/ChenPengGang/WLAlignCode.
翻译:在低维嵌入空间完成对齐的地方,使用图形代表制学习的网络用户对齐工作被认为是有效的。然而,实现高度精确的对齐仍然具有挑战性,特别是在遇到与标签锚有长距离连接的节点时。为了减轻这一限制,我们特意设计了WL-Aalign,采用一个常规化代表制学习框架,以学习独特的节点表示方式;扩大了Weisfeiler-Lehman Isorformatismis 测试,学习了“跨网络Weisfeiler-Lehman再标签”和“近距离-保护代表制学习”交替阶段的对齐工作。跨网络的Weisfeiler-Lehman再贴标签仍然是挑战性。跨网络的Weisfeiler-Lehman重新贴标签工作是通过在基于锁定标签的标签的传播和类似性基点的基础上完成的。为了以高效和稳健的方式利用已知的锚点连接到不同的节点,我们提议的定位连接功能模块在个人网络Wisfeiler/Lehman有固定标签。在现实和合成数据设置中进行广泛的实验。我们拟议的WestLaction的匹配的功能模型显示了我们的重要功能模式。