Neural Radiance Fields (NeRFs) are trained using a set of camera poses and associated images as input to estimate density and color values for each position. The position-dependent density learning is of particular interest for photogrammetry, enabling 3D reconstruction by querying and filtering the NeRF coordinate system based on the object density. While traditional methods like Structure from Motion are commonly used for camera pose calculation in pre-processing for NeRFs, the HoloLens offers an interesting interface for extracting the required input data directly. We present a workflow for high-resolution 3D reconstructions almost directly from HoloLens data using NeRFs. Thereby, different investigations are considered: Internal camera poses from the HoloLens trajectory via a server application, and external camera poses from Structure from Motion, both with an enhanced variant applied through pose refinement. Results show that the internal camera poses lead to NeRF convergence with a PSNR of 25\,dB with a simple rotation around the x-axis and enable a 3D reconstruction. Pose refinement enables comparable quality compared to external camera poses, resulting in improved training process with a PSNR of 27\,dB and a better 3D reconstruction. Overall, NeRF reconstructions outperform the conventional photogrammetric dense reconstruction using Multi-View Stereo in terms of completeness and level of detail.
翻译:神经辐射场(NeRF)通过一组摄像头姿势和相关图像作为输入进行训练,以预测每个位置的密度和颜色值。这种依赖位置的密度学习对光测学特别有用,通过查询和过滤基于对象密度的NeRF坐标系实现3D重建。虽然结构从运动等传统方法通常用于NeRF的预处理中,但HoloLens提供了一种直接提取所需输入数据的有趣接口。我们提出了一个使用NeRF从HoloLens数据直接进行高分辨率3D重建的工作流。我们考虑了不同的调查:通过服务器应用程序从HoloLens轨迹获取的内部相机姿势以及通过姿势细化应用的改进型的外部相机姿势。结果表明,内部相机姿势可导致围绕x轴的简单旋转导致NeRF收敛时达到25 dB的峰值信噪比,从而实现了3D重建。姿势细化使得与外部相机姿势相比具有可比质量,结果为27 dB的峰值信噪比,并实现了更好的3D重建。总体而言,NeRF重建在完整性和细节水平方面优于使用多视图立体视觉进行的传统光学密集重建。