Statistical power is a measure of the goodness/strength of a hypothesis test. Formally, it is the probability of detecting an effect, if there is a true effect present to detect. Hence, optimizing statistical power as a function of some parameters of a hypothesis test is desirable. However, for most hypothesis tests, the explicit functional form of statistical power as a function of those parameters is unknown but calculating statistical power for a given set of values of those parameters is possible using simulated experiments. These simulated experiments are usually computationally expensive. Hence, developing the entire statistical power manifold using simulations can be very time-consuming. Motivated by this, we propose a novel genetic algorithm-based framework for learning statistical power manifold. For a multiple linear regression $F$-test, we show that the proposed algorithm/framework learns the statistical power manifold much faster as compared to a brute-force approach as the number of queries to the power oracle is significantly reduced. We also show that the quality of learning the manifold improves as the number of iterations increases for the genetic algorithm.
翻译:统计力量是衡量假设测试的精度/强度的尺度。 形式上, 这是检测效果的概率, 如果有真实的效果需要检测的话。 因此, 优化统计力量作为假设测试某些参数的函数是可取的。 但是, 在大多数假设测试中, 统计力量作为这些参数的函数的明显功能形式是未知的, 但是使用模拟实验来计算这些参数的一组特定值的统计力量是可能的。 这些模拟实验通常在计算上花费大量费用。 因此, 利用模拟开发整个统计力量体可能非常耗时。 我们为此提出一个新的基于遗传算法的框架, 用于学习统计力量。 对于多重线性回归, 我们显示, 拟议的算法/框架比粗力方法要快得多地学习统计力量, 因为对权力或触法的查询数量大大降低。 我们还表明,随着基因算法的重复增加, 学习多重能力的质量会提高。