Given data generated from multiple factors of variation that cooperatively transform their appearance, disentangled representations aim at reversing the process by mapping data to multiple random variables that individually capture distinct generative factors. As the concept is intuitive but abstract, one needs to quantify it with disentanglement metrics to evaluate and compare the quality of disentangled representations between different models. Current disentanglement metrics are designed to measure the concentration, e.g., absolute deviation, variance, or entropy, of each variable conditioned by each generative factor, optionally offset by the concentration of its marginal distribution, and compare it among different variables. When representations consist of more than two variables, such metrics may fail to detect the interplay between them as they only measure pairwise interactions. In this work, we use the Partial Information Decomposition framework to evaluate information sharing between more than two variables, and build a framework, including a new disentanglement metric, for analyzing how the representations encode the generative factors distinctly, redundantly, and cooperatively. We establish an experimental protocol to assess how each metric evaluates increasingly entangled representations and confirm through artificial and realistic settings that the proposed metric correctly responds to entanglement. Our results are expected to promote information theoretic understanding of disentanglement and lead to further development of metrics as well as learning methods.


翻译:考虑到从多种变异因素产生的数据,这些变异因素合力地改变其外观,分解的表达方式旨在通过将数据映射为多个随机变异变量,单独捕捉不同的基因因素来扭转这一过程。由于这个概念是直观的,但抽象的,因此需要用分解的衡量尺度来量化它,以评价和比较不同模型之间分解的表达方式的质量。目前的分解度指标旨在测量每个变异因素的集中程度,例如,绝对偏差、差异或变异,每个变异因素的变异性以每个变异性因素的不同特征为条件,可选用其边际分布的集中加以抵消,并将之与不同的变异性进行比较。当表示方式由两个以上的变异性组成时,这类衡量尺度可能无法检测它们之间的相互作用,因为它们只测量对立的相互作用。在这项工作中,我们使用部分信息分解框架来评价两个变异异的表达质量,包括新的分解度衡量尺度,用来分析每个变异性因素如何以明显、冗余的方式对归异性因素进行分解,并按不同的变异性分布进行对比。我们越来越纠缠缠缠绕的表达的表达的描述,并通过人和测量的衡量方法来正确地确认我们所拟的衡量结果的衡量。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【AAAI2021】信息瓶颈和有监督表征解耦
专知会员服务
20+阅读 · 2021年1月27日
专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月20日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
4+阅读 · 2018年4月10日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员