Game theory largely rests on the availability of cardinal utility functions. In contrast, only ordinal preferences are elicited in fields such as matching under preferences. The literature focuses on mechanisms with simple dominant strategies. However, many real-world applications do not have dominant strategies, so intensities between preferences matter when participants determine their strategies. Even though precise information about cardinal utilities is unavailable, some data about the likelihood of utility functions is typically accessible. We propose to use Bayesian games to formalize uncertainty about decision-makers utilities by viewing them as a collection of normal-form games where uncertainty about types persist in all game stages. Instead of searching for the Bayes-Nash equilibrium, we consider the question of how uncertainty in utilities is reflected in uncertainty of strategic play. We introduce $\alpha$-Rank-collections as a solution concept that extends $\alpha$-Rank, a new solution concept for normal-form games, to Bayesian games. This allows us to analyze the strategic play in, for example, (non-strategyproof) matching markets, for which we do not have appropriate solution concepts so far. $\alpha$-Rank-collections characterize a range of strategy-profiles emerging from replicator dynamics of the game rather than equilibrium point. We prove that $\alpha$-Rank-collections are invariant to positive affine transformations, and that they are efficient to approximate. An instance of the Boston mechanism is used to illustrate the new solution concept.
翻译:游戏理论主要取决于基本公用功能的可用性。 相比之下, 文献只以在偏好下进行匹配等领域获取常规游戏的偏好。 但是, 许多现实世界应用程序并不具有主导性战略, 所以在参与者决定其战略时, 偏好之间的强度很重要 。 尽管关于基本公用功能的精确信息不存在, 有关使用功能可能性的一些数据一般是可以获得的 。 我们提议使用巴伊西亚游戏将决策者公用功能的不确定性正式化, 将其视为普通游戏的集合, 其类型在游戏的所有阶段都存在不确定性 。 我们不是寻找 Bayes- Nash 平衡, 而是研究如何在战略游戏的不确定性中反映出公用事业的不确定性。 我们引入了美元/ alpha$- Rank 的集合作为解决方案的概念, 将美元/ alpha- Rank 的常规游戏的新解决方案概念扩大到Bayesian游戏。 这让我们能够分析战略游戏的匹配性游戏, 例如, (非战略防火) 匹配市场, 而我们并没有适当的解决方案概念。 美元\\\ realphal- transal regreal rual- sal regal laction acal acregal degal degal lagres