Data-driven approaches coupled with physical knowledge are powerful techniques to model systems. The goal of such models is to efficiently solve for the underlying field by combining measurements with known physical laws. As many systems contain unknown elements, such as missing parameters, noisy data, or incomplete physical laws, this is widely approached as an uncertainty quantification problem. The common techniques to handle all the variables typically depend on the numerical scheme used to approximate the posterior, and it is desirable to have a method which is independent of any such discretization. Information field theory (IFT) provides the tools necessary to perform statistics over fields that are not necessarily Gaussian. We extend IFT to physics-informed IFT (PIFT) by encoding the functional priors with information about the physical laws which describe the field. The posteriors derived from this PIFT remain independent of any numerical scheme and can capture multiple modes, allowing for the solution of problems which are ill-posed. We demonstrate our approach through an analytical example involving the Klein-Gordon equation. We then develop a variant of stochastic gradient Langevin dynamics to draw samples from the joint posterior over the field and model parameters. We apply our method to numerical examples with various degrees of model-form error and to inverse problems involving nonlinear differential equations. As an addendum, the method is equipped with a metric which allows the posterior to automatically quantify model-form uncertainty. Because of this, our numerical experiments show that the method remains robust to even an incorrect representation of the physics given sufficient data. We numerically demonstrate that the method correctly identifies when the physics cannot be trusted, in which case it automatically treats learning the field as a regression problem.
翻译:由数据驱动的方法加上物理知识是模型系统的强大技术。这类模型的目标是通过将测量与已知物理法相结合,高效率地解决基础领域。由于许多系统包含未知元素,例如缺失参数、吵吵数据或不完整物理法则,因此被广泛视为不确定性量化问题。处理所有变量的共同技术通常取决于用来近似后部的数值方法,最好有一个独立于任何这种离散的方法。信息字段理论甚至提供了在不一定高斯的字段上进行统计的必要工具。我们把IFT扩大到物理知情的IFT(PIFT),将功能前端与描述字段的物理法信息编码起来。从PIFT中衍生出来的后端数据仍然独立于任何数字法,可以捕捉多种模式,从而能够解决存在错误的问题。我们通过一个涉及克莱因-哥尔登等式模型的分析示例来展示我们的方法。我们随后无法开发一个从联合的后方程式的梯度梯度动态变量的变异变量,以便用描述字段和模型参数的样本。我们用一种不透明的方法来显示一个数字模型的模型的模型,我们的方法可以用来显示一个不易变的模型,我们用来显示一个数字的模型的模型的模型的模型的模型,我们用度的模型的模型的模型的模型的模型的变数度。我们用法度的模型的模型的模型的变数度,我们用法度的模型的模型的模型的模型的模型的模型的模型的模型的变数法度,用来来显示一种方法可以显示一种方法用来显示一种方法,用来来显示一个不易变。