We propose a novel definition of Shapley values with uncertain value functions based on first principles using probability theory. Such uncertain value functions can arise in the context of explainable machine learning as a result of non-deterministic algorithms. We show that random effects can in fact be absorbed into a Shapley value with a noiseless but shifted value function. Hence, Shapley values with uncertain value functions can be used in analogy to regular Shapley values. However, their reliable evaluation typically requires more computational effort.
翻译:我们建议根据使用概率理论的第一条原则,对具有不确定价值函数的沙普利值作出新的定义。这种不确定价值函数可能产生于非确定性算法的可解释的机器学习。我们表明,随机效应实际上可以被吸收到一个沙普利值中,具有无噪音但转移的价值函数。因此,具有不确定价值函数的沙普利值可以用来类比正常的沙普利值。然而,其可靠的评估通常需要更多的计算努力。