Many optimization problems suffer from noise, and nonlinearity check-based decomposition methods (e.g. Differential Grouping) will completely fail to detect the interactions between variables in multiplicative noisy environments, thus, it is difficult to decompose the large-scale optimization problems (LSOPs) in noisy environments. In this paper, we propose an automatic Random Grouping (aRG), which does not need any explicit hyperparameter specified by users. Simulation experiments and mathematical analysis show that aRG can detect the interactions between variables without the fitness landscape knowledge, and the sub-problems decomposed by aRG have smaller scales, which is easier for EAs to optimize. Based on the cooperative coevolution (CC) framework, we introduce an advanced optimizer named Modified Differential Evolution with Distance-based Selection (MDE-DS) to enhance the search ability in noisy environments. Compared with canonical DE, the parameter self-adaptation, the balance between diversification and intensification, and the distance-based probability selection endow MDE-DS with stronger ability in exploration and exploitation. To evaluate the performance of our proposal, we design $500$-D and $1000$-D problems with various separability in noisy environments based on the CEC2013 LSGO Suite. Numerical experiments show that our proposal has broad prospects to solve LSOPs in noisy environments and can be easily extended to higher-dimensional problems.
翻译:许多优化问题都来自噪音,非线性基于检查的分解方法(例如,差异组)将完全无法发现多复制性噪音环境中变量之间的相互作用,因此,很难分解在噪音环境中的大规模优化问题(LSOPs),在本文中,我们建议自动随机分组(ARG),不需要用户指定任何明确的超光度计。模拟实验和数学分析表明,ARG可以检测各种变量之间的相互作用,而没有健身地貌知识,而由ARG分解的子问题则规模较小,使EA更便于优化。根据合作共变(CC)框架,我们采用名为远程选择(MDE-DS)的变异性变异性变异性变异性变异性变性(ARG),以提高在噪音环境中的搜索能力。与CONDE相比,参数自适应性调整,多样化和强化之间的平衡,以及基于远基概率选择的MDED-D-D的底点环境,在勘探和开发方面能力更强。根据合作共进(CC)框架,我们设计了一个名为LE-C-C-C-C-C-Rial-C-C-C-C-Provilation A 方案,我们以10美元的深度环境,我们设计了500-C-C-C-C-C-C-C-C-C-I-C-C-C-I-I-I-I-I-I-I-I-I-C-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-P-P-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-