Face recognition systems are deployed across the world by government agencies and contractors for sensitive and impactful tasks, such as surveillance and database matching. Despite their widespread use, these systems are known to exhibit bias across a range of sociodemographic dimensions, such as gender and race. Nonetheless, an array of works proposing pre-processing, training, and post-processing methods have failed to close these gaps. Here, we take a very different approach to this problem, identifying that both architectures and hyperparameters of neural networks are instrumental in reducing bias. We first run a large-scale analysis of the impact of architectures and training hyperparameters on several common fairness metrics and show that the implicit convention of choosing high-accuracy architectures may be suboptimal for fairness. Motivated by our findings, we run the first neural architecture search for fairness, jointly with a search for hyperparameters. We output a suite of models which Pareto-dominate all other competitive architectures in terms of accuracy and fairness. Furthermore, we show that these models transfer well to other face recognition datasets with similar and distinct protected attributes. We release our code and raw result files so that researchers and practitioners can replace our fairness metrics with a bias measure of their choice.


翻译:政府机构和承包商为敏感和有影响的任务在世界各地部署面对面的识别系统,例如监视和数据库匹配。尽管这些系统被广泛使用,但众所周知,这些系统在性别和种族等一系列社会人口层面表现出偏见。然而,一系列提议预处理、培训和后处理方法的工作未能弥补这些差距。在这里,我们对这个问题采取非常不同的办法,确定神经网络的建筑和超光度计在减少偏差方面起着作用。我们首先对建筑的影响进行了大规模分析,对若干通用的公平度量指标进行了超强参数培训,并表明选择高精度结构的隐含公约可能不利于公平。我们根据调查结果,我们运行了第一个神经结构寻求公平,同时搜索了超度参数。我们制作了一套模型,Pareto在准确和公平方面将所有其他竞争性结构都定了下来。此外,我们展示了这些模型向其他面临识别的数据集转移的模型,并展示了相似和受保护的属性,表明选择高精确度结构的隐含的隐含的公约可能不利于公平性。我们发布了我们的代码和原始结果,从而用测量了研究人员和从业者选择的公正度来取代了自己的选择。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员