Telepresence aims to create an immersive but virtual experience of the audio and visual scene at the far end for users at the near end. In this contribution, we propose an array-based binaural rendering system that converts the array microphone signals into the head-related transfer function (HRTF) filtered output signals for headphone-rendering. The proposed approach is formulated in light of a model-matching principle (MMP) and is capable of delivering more immersive experience than the conventional localization-beamforming-HRTF filtering (LBH) approach. The MMP-based rendering system can be realized via multichannel inverse filtering (MIF) and multichannel deep filtering (MDF). In this study, we adopted the MDF approach and used the LBH as well as MIF as the baselines. The all-neural system jointly captures the spatial information (spatial rendering), preserves ambient sound (enhancement), and reduces noise (enhancement) before generating binaural outputs. Objective and subjective tests are employed to compare the proposed telepresence system with two baselines.


翻译:远程观测旨在为近端的用户在远端的音频和视觉场景创造隐性但虚拟的经验。 在这项贡献中,我们提议了一个基于阵列的二进制转换系统,将阵列麦克风信号转换成与头部有关的传输功能(HRTF)过滤式输出信号,用于耳机传输。提议的方法是根据模型匹配原则(MMP)制定的,能够比常规的本地化-成形-HRTF过滤(LBH)方法(LBH)提供更隐性的经验。基于MMP的转换系统可以通过多道反向过滤(MIF)和多道深层过滤(MDF)实现。在这项研究中,我们采用了MDF方法,并将LBH和MIF作为基线。所有神经系统共同捕捉到空间信息(空间成像)、保护环境声音(增强)和减少噪音(增强),然后产生双声波输出。目标和主观测试用于将拟议的远程系统与两个基线进行比较。</s>

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2023年4月24日
Arxiv
64+阅读 · 2021年6月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员