Reliable and accurate localization is crucial for mobile autonomous systems. Pole-like objects, such as traffic signs, poles, lamps, etc., are ideal landmarks for localization in urban environments due to their local distinctiveness and long-term stability. In this paper, we present a novel, accurate, and fast pole extraction approach that runs online and has little computational demands such that this information can be used for a localization system. Our method performs all computations directly on range images generated from 3D LiDAR scans, which avoids processing 3D point cloud explicitly and enables fast pole extraction for each scan. We test the proposed pole extraction and localization approach on different datasets with different LiDAR scanners, weather conditions, routes, and seasonal changes. The experimental results show that our approach outperforms other state-of-the-art approaches, while running online without a GPU. Besides, we release our pole dataset to the public for evaluating the performance of pole extractor, as well as the implementation of our approach.
翻译:可靠和准确的本地化对于移动自主系统至关重要。 类似波兰的物体,如交通标志、电线杆、灯具等,由于其本地特性和长期稳定性,是城市环境中本地化的理想里程碑。 在本文中,我们展示了一种新型的、准确的和快速的提取方法,这种方法在网上运行,没有计算上要求这种信息可用于本地化系统。 我们的方法直接根据3D LiDAR扫描产生的图像进行所有计算,这避免了对3D点云进行明确处理,使每次扫描都能快速提取。 我们用不同的LIDAR扫描仪、天气条件、路线和季节性变化测试了不同数据集上拟议的极提取和本地化方法。 实验结果显示,我们的方法在没有GPU的情况下运行,优于其他最先进的方法。 此外,我们把极数据集提供给公众,用于评估极提取器的性能,以及我们方法的实施。