A formula is presented for designing zero-determinant(ZD) strategies of general finite games, which have $n$ players and players can have different numbers of strategies. To this end, using semi-tensor product (STP) of matrices, the profile evolutionary equation for repeated finite games is obtained. Starting from it, the ZD strategies are developed for general finite games, based on the same technique proposed by Press and Dyson \cite{pre12}. A formula is obtain to design ZD strategies for any player directly, ignoring the original ZD design process. Necessary and sufficient condition is obtained to ensure the effectiveness of the designed ZD strategies. As a consequence, it is also clear that player $i$ is able to unilaterally design $|S_i|-1$ dominating linear relations about the expected payoffs of all players. Finally, the fictitious opponent player is proposed for networked evolutionary networks (NEGs). Using it, the ZD-strategies are applied to NEGs. It is surprising that an individual in a network may use ZD strategies to conflict the whole rest network.


翻译:为设计普通定点游戏的零确定性(ZD)策略提出了一个公式,普通定点游戏的玩家和玩家可以拥有不同数量的策略。为此,使用半临界值矩阵产品(STP),获得了重复定点游戏的剖析进化方程。从这个公式开始,为普通定点游戏制定了ZD策略,其基础是Press和Dyson 和 Dyson 提议的相同技术。获得了一个公式,直接为任何玩家设计ZD策略,而忽略了最初的ZD设计过程。获得了确保设计 ZD策略有效性的必要和充分条件。因此,显然,玩家美元能够单方面设计关于所有玩家预期报酬的线性关系。最后,为网络化的进化网络提出了虚构的对手玩家(NEGs)。利用这个公式,ZD策略适用于NEGs。令人惊讶的是,一个网络中的个人可以使用ZD策略来对抗整个休息网络。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年8月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年8月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员