The aim of this paper is to analyze from a mathematical perspective some existing schemes to partition a molecular density into several atomic contributions, with a specific focus on Iterative Stockholder Atom (ISA) methods. We provide a unified mathematical framework to describe the latter family of methods and propose a new scheme, named L-ISA (for linear approximation of ISA). We prove several important mathematical properties of the ISA and L-ISA minimization problems and show that the so-called ISA algorithms can be viewed as alternating minimization schemes, which in turn enables us to obtain new convergence results for these numerical methods. Specific mathematical properties of the ISA decomposition for diatomic systems are also presented. We also review the basis-space oriented Distributed Multipole Analysis method, the mathematical formulation of which is also clarified. Different schemes are numerically compared on different molecules and we discuss the advantages and drawbacks of each approach.
翻译:本文的目的是从数学角度分析将分子密度分解为几种原子贡献的一些现有计划,特别侧重于迭代股东原子(ISA)方法,我们提供了一个统一的数学框架来描述后一类方法,并提出新的计划,称为L-ISA(ISA的线性近似近似值)。我们证明ISA和L-ISA尽量减少问题的若干重要的数学特性,并表明所谓的ISA算法可被视为交替最小化计划,这反过来又使我们能够为这些数字方法获得新的趋同结果。还介绍了ISA对二解剖系统的具体数学特性。我们还审查了以空间为主的多极分布分析方法的数学特性,该方法的数学配方也得到了澄清。对不同的分子的不同方案进行了数字比较,我们讨论了每种方法的优点和优点。