We introduce two synthetic likelihood methods for Simulation-Based Inference (SBI), to conduct either amortized or targeted inference from experimental observations when a high-fidelity simulator is available. Both methods learn a conditional energy-based model (EBM) of the likelihood using synthetic data generated by the simulator, conditioned on parameters drawn from a proposal distribution. The learned likelihood can then be combined with any prior to obtain a posterior estimate, from which samples can be drawn using MCMC. Our methods uniquely combine a flexible Energy-Based Model and the minimization of a KL loss: this is in contrast to other synthetic likelihood methods, which either rely on normalizing flows, or minimize score-based objectives; choices that come with known pitfalls. We demonstrate the properties of both methods on a range of synthetic datasets, and apply them to a neuroscience model of the pyloric network in the crab, where our method outperforms prior art for a fraction of the simulation budget.
翻译:我们介绍了两种基于合成似然的模拟推断方法,用于当高保真度的模拟器可用时从实验观测到进行摊销或通过针对对象进行推断。这两种方法使用由模拟器生成的合成数据学习似然的条件能量模型(EBM),条件是从建议分布中抽取的参数。然后可以将学习到的似然与任何先验相结合,以获得后验估计,从中可以使用MCMC绘制样本。我们的方法独特地结合了灵活的能量模型和最小化KL损失:这与其他合成似然方法不同,其他方法要么依赖于归一化流,要么最小化基于得分的目标,这些选择伴随着已知的缺陷。我们在一系列合成数据集上展示了两种方法的属性,并将其应用于蟹的泌乳网络中的神经科学模型,在那里我们的方法在一定的模拟预算内胜过了先前的技术。