项目名称: 反常扩散螺旋波动力学研究

项目编号: No.11205044

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学II

项目作者: 贺亚峰

作者单位: 河北大学

项目金额: 22万元

中文摘要: 均相反应扩散系统中的斑图动力学通常用反应扩散模型来定性描述。这些传统的模型假设反应物分子在反应媒介中正常扩散。然而,对于非均相Pt表面、多孔玻璃以及凝胶等具有分形结构的媒介,反应物分子在其中实际存在着反常扩散。因此,传统的反应扩散模型已经不能完整地描述分形媒介中的斑图动力学。针对这一问题,本项目拟采用分数阶反应扩散方程描述反常扩散时的斑图动力学,集中研究反常扩散螺旋波动力学。利用线性稳定性分析与谱方法数值模拟研究超扩散与欠扩散时螺旋波的形成、演化与失稳过程,分析超扩散与欠扩散共存时的竞争机制,探讨各向异性压缩螺旋波的形成机理。本项目的开展,将从一个新的角度揭示分形媒介实验中的螺旋波动力学,为Pt催化CO氧化反应和化学反应实验提供理论解释和实验指导。

中文关键词: 斑图动力学;反常扩散;;;

英文摘要: The dynamics of pattern formation in homogeneous reaction-diffusion systems have been described qualitatively by the reaction-diffusion models. These traditional models assume that the reactant molecules diffuse normally in the reaction medium. However, for the media with fractal structure, such as the heterogeneous Pt surface, porous glass and gel, the reactant molecules could diffuse in an anomalous way. Therefore, these traditional reaction-diffusion models can not completely describe the pattern formation observed in the experiments in which these fractal media are used. To solve this problem, this project intends to adopt the fractional reaction-diffusion equations to describe the dynamics of pattern formation in anomalous diffusion case. We will focused on the dynamics of spiral wave with anomalous diffusion. We will study the formation, evolution and instability of spiral patterns in the superdiffusion and subdiffusion cases by using the linear stability analysis and the numerical simulation with spectral methods. We will make efforts to illustrate the mechanism of competition between the superdiffusion and subdiffusion and discuss the formation of compressed spiral with anisotropic diffusion. This project will reveal the dynamics of spiral pattern observed in fractal media from a new viewpoint and provid

英文关键词: pattern formation;anomalous diffusion;;;

成为VIP会员查看完整内容
0

相关内容

AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
可靠深度异常检测,34页ppt,Google Balaji Lakshminarayanan讲解
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
49+阅读 · 2021年6月2日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
百度事件图谱技术与应用
专知会员服务
58+阅读 · 2020年12月30日
基于旅游知识图谱的可解释景点推荐
专知会员服务
90+阅读 · 2020年9月4日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
定价模型,该如何做分析?
人人都是产品经理
0+阅读 · 2022年2月21日
从美团优选,看社区团购的本质
人人都是产品经理
0+阅读 · 2022年1月22日
用扩散模型生成高保真度图像
TensorFlow
1+阅读 · 2021年8月17日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
33+阅读 · 2021年12月31日
Arxiv
57+阅读 · 2021年5月3日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
Arxiv
12+阅读 · 2019年3月14日
小贴士
相关主题
相关VIP内容
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
可靠深度异常检测,34页ppt,Google Balaji Lakshminarayanan讲解
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
49+阅读 · 2021年6月2日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
百度事件图谱技术与应用
专知会员服务
58+阅读 · 2020年12月30日
基于旅游知识图谱的可解释景点推荐
专知会员服务
90+阅读 · 2020年9月4日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
相关资讯
定价模型,该如何做分析?
人人都是产品经理
0+阅读 · 2022年2月21日
从美团优选,看社区团购的本质
人人都是产品经理
0+阅读 · 2022年1月22日
用扩散模型生成高保真度图像
TensorFlow
1+阅读 · 2021年8月17日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员