In this paper, we provide bounds in Wasserstein and total variation distances between the distributions of the successive iterates of two functional autoregressive processes with isotropic Gaussian noise of the form $Y_{k+1} = \mathrm{T}_\gamma(Y_k) + \sqrt{\gamma\sigma^2} Z_{k+1}$ and $\tilde{Y}_{k+1} = \tilde{\mathrm{T}}_\gamma(\tilde{Y}_k) + \sqrt{\gamma\sigma^2} \tilde{Z}_{k+1}$. More precisely, we give non-asymptotic bounds on $\rho(\mathcal{L}(Y_{k}),\mathcal{L}(\tilde{Y}_k))$, where $\rho$ is an appropriate weighted Wasserstein distance or a $V$-distance, uniformly in the parameter $\gamma$, and on $\rho(\pi_{\gamma},\tilde{\pi}_{\gamma})$, where $\pi_{\gamma}$ and $\tilde{\pi}_{\gamma}$ are the respective stationary measures of the two processes. The class of considered processes encompasses the Euler-Maruyama discretization of Langevin diffusions and its variants. The bounds we derive are of order $\gamma$ as $\gamma \to 0$. To obtain our results, we rely on the construction of a discrete sticky Markov chain $(W_k^{(\gamma)})_{k \in \mathbb{N}}$ which bounds the distance between an appropriate coupling of the two processes. We then establish stability and quantitative convergence results for this process uniformly on $\gamma$. In addition, we show that it converges in distribution to the continuous sticky process studied in previous work. Finally, we apply our result to Bayesian inference of ODE parameters and numerically illustrate them on two particular problems.


翻译:在本文中, 我们以 瓦西斯坦 提供两个功能自动递增进程的连续循环分配的分解值, 以及两个函数递增进程的连续循环分配之间的总距离。 以 $Y\ k+1} =\ mathrm{ T ⁇ gamma( Y_ k) +\ qrt\ gama\ gma2} +\ sqrt{ k+1} 和 $\ tilde{ Y\ k+1} =\ tilde\\ mathrm{ T ⁇ gamma} = 参数 +\ sqrt\ glamta\ gmama\ g2}\ titled de gde\ k+1} 。 更精确地说, 我们给 $( commamay) 的分子递增进程, 和 美元递增进程 的 。 以 美元 =\\\\\ maqr\ max 进程中的 。 max max 进程中的 max max max 进程和 rodeal romodeal romodeal 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
0+阅读 · 2023年3月25日
Arxiv
0+阅读 · 2023年3月25日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员