Visual dialog is challenging since it needs to answer a series of coherent questions based on understanding the visual environment. How to ground related visual objects is one of the key problems. Previous studies utilize the question and history to attend to the image and achieve satisfactory performance, however these methods are not sufficient to locate related visual objects without any guidance. The inappropriate grounding of visual objects prohibits the performance of visual dialog models. In this paper, we propose a novel approach to Learn to Ground visual objects for visual dialog, which employs a novel visual objects grounding mechanism where both prior and posterior distributions over visual objects are used to facilitate visual objects grounding. Specifically, a posterior distribution over visual objects is inferred from both context (history and questions) and answers, and it ensures the appropriate grounding of visual objects during the training process. Meanwhile, a prior distribution, which is inferred from context only, is used to approximate the posterior distribution so that appropriate visual objects can be grounded even without answers during the inference process. Experimental results on the VisDial v0.9 and v1.0 datasets demonstrate that our approach improves the previous strong models in both generative and discriminative settings by a significant margin.
翻译:视觉对话具有挑战性, 因为它需要基于对视觉环境的理解来回答一系列一致的问题。 如何定位相关视觉对象是关键问题之一 。 以前的研究利用问题和历史来关注图像并取得令人满意的性能, 但是这些方法不足以在没有任何指导的情况下定位相关视觉对象。 视觉对象的不适当定位禁止视觉对话模型的性能 。 在本文中, 我们提出一种新的方法, 学习为视觉对话定位视觉对象, 使用一个新颖的视觉物体定位机制, 用于利用视觉对象的先前和后方分布来便利视觉物体的定位。 具体地说, 从上下文( 历史和问题) 和答案中推断视觉对象的后方分布, 并确保在培训过程中适当定位视觉对象。 与此同时, 先前的分布( 仅从上下文推断) 用于近似于外观分布, 以便适当的视觉对象即使没有答案也可以在推断过程中进行定位 。 VisDial v0. 9 和 v1.0 数据集的实验性结果表明, 我们的方法通过一个显著的边距来改进先前的强型模型。