In the spanning tree congestion problem, given a connected graph $G$, the objective is to compute a spanning tree $T$ in $G$ for which the maximum edge congestion is minimized, where the congestion of an edge $e$ of $T$ is the number of vertex pairs adjacent in $G$ for which the path connecting them in $T$ traverses $e$. The problem is known to be NP-hard, but its approximability is still poorly understood, and it is not even known whether the optimum can be efficiently approximated with ratio $o(n)$. In the decision version of this problem, denoted STC-$K$, we need to determine if $G$ has a spanning tree with congestion at most $K$. It is known that STC-$K$ is NP-complete for $K\ge 8$, and this implies a lower bound of $1.125$ on the approximation ratio of minimizing congestion. On the other hand, $3$-STC can be solved in polynomial time, with the complexity status of this problem for $K\in \{4,5,6,7\}$ remaining an open problem. We substantially improve the earlier hardness result by proving that STC-$K$ is NP-complete for $K\ge 5$. This leaves only the case $K=4$ open, and improves the lower bound on the approximation ratio to $1.2$.
翻译:在横跨树木拥堵问题中,考虑到相联的图表$G美元,目标是用最大边缘拥堵最小化,用最大边缘拥堵最小化的一棵树用美元计算一棵横贯的树$T$,其中,利差值为美元,利差值为美元周围的顶顶层对子数量,连接他们的路径用美元打通的顶层对子数量为美元。众所周知,问题在于NP-硬度,但其可达性仍然不为人所知,甚至还不知道最佳比率能否有效地与美元比率相近。在这一问题的决定版本中,用STC-K美元表示,我们需要确定,利差值值为美元,因为美元,美元是宽值,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,而美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,问题,等等,等等,问题,等等,等等,问题,等等。