Placing robots outside controlled conditions requires versatile movement representations that allow robots to learn new tasks and adapt them to environmental changes. The introduction of obstacles or the placement of additional robots in the workspace, the modification of the joint range due to faults or range-of-motion constraints are typical cases where the adaptation capabilities play a key role for safely performing the robot's task. Probabilistic movement primitives (ProMPs) have been proposed for representing adaptable movement skills, which are modelled as Gaussian distributions over trajectories. These are analytically tractable and can be learned from a small number of demonstrations. However, both the original ProMP formulation and the subsequent approaches only provide solutions to specific movement adaptation problems, e.g., obstacle avoidance, and a generic, unifying, probabilistic approach to adaptation is missing. In this paper we develop a generic probabilistic framework for adapting ProMPs. We unify previous adaptation techniques, for example, various types of obstacle avoidance, via-points, mutual avoidance, in one single framework and combine them to solve complex robotic problems. Additionally, we derive novel adaptation techniques such as temporally unbound via-points and mutual avoidance. We formulate adaptation as a constrained optimisation problem where we minimise the Kullback-Leibler divergence between the adapted distribution and the distribution of the original primitive while we constrain the probability mass associated with undesired trajectories to be low. We demonstrate our approach on several adaptation problems on simulated planar robot arms and 7-DOF Franka-Emika robots in a dual robot arm setting.


翻译:将机器人置于受控制的条件之外需要多功能的移动演示,使机器人能够学习新的任务,并适应环境变化。但引入障碍或将更多的机器人安置在工作空间,由于差错或情绪范围限制而修改联合范围,是适应能力在安全执行机器人任务方面发挥关键作用的典型情况。在本文中,我们为适应ProMP提出了一种通用的概率框架。我们统一了先前的适应技术,例如各种类型的障碍避免方法、通过轨迹、相互避免、在一个单一的框架中进行分析,并从少量演示中学习。然而,最初的ProMP的配制和随后的办法仅为具体的移动适应问题提供了解决办法,例如避免障碍,以及一种通用、统一、稳妥的适应方法。在本文中,我们为调整ProMP的工作制定了一种通用的概率框架。我们统一了先前的适应技术,例如,各种类型的障碍避免障碍,通过点、相互避免,在一个单一的框架中进行,并将它们结合到解决复杂的机器人问题。此外,我们从最初的ProMP 和随后的方法中,我们用新的调整技术来解决具体的运动适应问题,例如:避免障碍,通过不透路面的流流流的流分配;我们通过流的流的流的流的流分配,我们通过流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流。我们,我们用的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流的流

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
52+阅读 · 2020年9月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员