Urbanization of an area is known to increase the temperature of the surrounding area. This phenomenon -- a so-called urban heat island (UHI) -- occurs at a local level over a period of time and has lasting impacts for historical data analysis. We propose a methodology to examine if long-term changes in temperature increases and decreases across time exist (and to what extent) at the local level for a given set of temperature readings at various locations. Specifically, we propose a Bayesian change point model for spatio-temporally dependent data where we select the number of change points at each location using a "forwards" selection process using deviance information criteria (DIC). We then fit the selected model and examine the linear slopes across time to quantify changes in long-term temperature behavior. We show the utility of this model and method using a synthetic data set and temperature measurements from eight stations in Utah consisting of daily temperature data for 60 years.
翻译:已知一个地区的城市化可以提高周围区域的温度。这种现象 -- -- 所谓的城市热岛(UHI) -- -- 在一个时期内发生在地方一级,对历史数据分析具有持久影响。我们提出一种方法,以审查当地是否存在不同时间温度增减的长期变化(以及在何种程度上),用于不同地点的一套特定温度读数。具体地说,我们提议了一个巴耶斯变化点模型,用于SPATIO-时间依赖数据,其中我们使用偏差信息标准(DIC)选择每个地点的改变点的数目。然后,我们适应选定的模型,并审查线性坡,以量化长期温度行为的变化。我们用一套合成数据集和从犹他州八个站进行温度测量,包括60年的每日温度数据,来显示这一模型和方法的效用。