This paper presents a novel hierarchical Bayesian model for unbiased atlas building with subject-specific regularizations of image registration. We develop an atlas construction process that automatically selects parameters to control the smoothness of diffeomorphic transformation according to individual image data. To achieve this, we introduce a hierarchical prior distribution on regularization parameters that allows multiple penalties on images with various degrees of geometric transformations. We then treat the regularization parameters as latent variables and integrate them out from the model by using the Monte Carlo Expectation Maximization (MCEM) algorithm. Another advantage of our algorithm is that it eliminates the need for manual parameter tuning, which can be tedious and infeasible. We demonstrate the effectiveness of our model on 3D brain MR images. Experimental results show that our model provides a sharper atlas compared to the current atlas building algorithms with single-penalty regularizations. Our code is publicly available at https://github.com/jw4hv/HierarchicalBayesianAtlasBuild.


翻译:本文展示了一种无偏见的贝叶斯人等级新颖的贝叶斯人图象建模模型,该模型有针对特定主题的图像注册规范。 我们开发了一个地图集构建过程, 自动选择参数, 以根据个人图像数据控制地貌变异的顺利性。 为此, 我们引入了对身份变异参数的等级分流, 允许对具有不同程度几何变异的图像进行多重处罚。 然后, 我们用蒙特卡洛期望最大化算法将身份变数视为潜在变量, 并将这些参数从模型中整合出来。 我们的算法的另一个优点是, 它消除了手动参数调控的需要, 手动参数调控可能乏味且不可行。 我们展示了我们3D大脑MM 图像模型的有效性。 实验结果显示, 我们的模型提供了比当前具有单面调校正的地图集算法更清晰的地图集。 我们的代码在 https://github.com/jw4hv/ Hierarchical BayesianAtlasBuild。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年9月7日
专知会员服务
27+阅读 · 2021年7月11日
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
30+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月11日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2021年9月7日
专知会员服务
27+阅读 · 2021年7月11日
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
30+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员