Many spatio-temporal data record the time of birth and death of individuals, along with their spatial trajectories during their lifetime, whether through continuous-time observations or discrete-time observations. Natural applications include epidemiology, individual-based modelling in ecology, spatio-temporal dynamics observed in bio-imaging, and computer vision. The aim of this article is to estimate in this context the birth and death intensity functions, that depend in full generality on the current spatial configuration of all alive individuals. While the temporal evolution of the population size is a simple birth-death process, observing the lifetime and trajectories of all individuals calls for a new paradigm. To formalise this framework, we introduce spatial birth-death-move processes, where the birth and death dynamics depends on the current spatial configuration of the population and where individuals can move during their lifetime according to a continuous Markov process with possible interactions.We consider non-parametric kernel estimators of their birth and death intensity functions. The setting is original because each observation in time belongs to a non-vectorial, infinite dimensional space and the dependence between observations is barely tractable. We prove the consistency of the estimators in presence of continuous-time and discrete-time observations, under fairly simple conditions. We moreover discuss how we can take advantage in practice of structural assumptions made on the intensity functions and we explain how data-driven bandwidth selection can be conducted, despite the unknown (and sometimes undefined) second order moments of the estimators. We finally apply our statistical method to the analysis of the spatio-temporal dynamics of proteins involved in exocytosis in cells, providing new insights on this complex mechanism.


翻译:许多时空数据记录了个人一生的出生和死亡时间,以及他们的空间轨迹,无论是通过连续的观察还是离散的时空观察。自然应用包括流行病学、基于个体的生态建模、生物成形中观察到的时空动态以及计算机视觉。本篇文章的目的是在此背景下估计出生和死亡强度功能,这些功能完全泛泛地取决于所有活人的当前空间配置。虽然人口规模的暂时演变是一个简单的出生-死亡过程,观察所有个人的一生和轨迹需要一个新的范式。为了正规化这一框架,我们引入了出生-死亡-运动空间建模过程,其中出生和死亡动态取决于人口目前的空间配置,以及个人一生中可以移动到一个连续的马尔科夫进程,并可能进行互动。我们考虑不完全测量其出生和死亡强度功能的复杂内脏细胞的测算器。我们之所以使用这种测序是原始的,是因为每个时间的观察都属于非统计性的、无限的表面空间和轨迹的轨迹要求,我们在不断的测算时空和依赖性测算中,我们是如何在不断的测算中最后能够解释我们是如何在持续测测算的。我们如何在不断的统计中的测算中进行这种测算。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月10日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员