The question whether a partition $\mathcal{P}$ and a hierarchy $\mathcal{H}$ or a tree-like split system $\mathfrak{S}$ are compatible naturally arises in a wide range of classification problems. In the setting of phylogenetic trees, one asks whether the sets of $\mathcal{P}$ coincide with leaf sets of connected components obtained by deleting some edges from the tree $T$ that represents $\mathcal{H}$ or $\mathfrak{S}$, respectively. More generally, we ask whether a refinement $T^*$ of $T$ exists such that $T^*$ and $\mathcal{P}$ are compatible. We report several characterizations for (refinements of) hierarchies and split systems that are compatible with (sets of) partitions. In addition, we provide a linear-time algorithm to check whether refinements of trees and a given partition are compatible. The latter problem becomes NP-complete but fixed-parameter tractable if a set of partitions is considered instead of a single partition. We finally explore the close relationship of the concept of compatibility and so-called Fitch maps.
翻译:分区 $\ mathcal{P} $ 美元和等级 $mathcal{H} $ 美元或树形分割系统$\ mathfrak{S} $ 美元是否相容的问题自然出现在一系列广泛的分类问题中。 在设置植物基因树时,人们会问, $\ mathcal{P} 美元是否与通过从树上删除代表$mathcal{H} $ 美元或$\ mathfrak{S} 美元的一些叶子组合相吻合。 更一般地说, 我们问, 是否存在一个精细的 $T $ _ 美元 美元 和 $\\ mathcal{P} $ 的问题。 我们报告了一些与( ) 分区分区结构相兼容的( ) 等级和 分立系统特征。 此外, 我们提供线性时间算法来检查树木和给定分区的精细度是否相容。 后一种问题是完全的, 但固定的单数可分距可测量, 如果考虑一套分区图的兼容性概念, 我们最后探索了所谓的单一分区的坐标。