Systems of fixpoint equations over complete lattices, consisting of (mixed) least and greatest fixpoint equations, allow one to express a number of verification tasks such as model-checking of various kinds of specification logics or the check of coinductive behavioural equivalences. In this paper we develop a theory of approximation for systems of fixpoint equations in the style of abstract interpretation: a system over some concrete domain is abstracted to a system in a suitable abstract domain, with conditions ensuring that the abstract solution represents a sound/complete overapproximation of the concrete solution. Interestingly, up-to techniques, a classical approach used in coinductive settings to obtain easier or feasible proofs, can be interpreted as abstractions in a way that they naturally fit in our framework and extend to systems of equations. Additionally, relying on the approximation theory, we can provide a characterisation of the solution of systems of fixpoint equations over complete lattices in terms of a suitable parity game, generalising some recent work that was restricted to continuous lattices. The game view opens the way to the development of on-the-fly algorithms for characterising the solution of such equation systems.
翻译:由( 混合的) 最小和最大固定点方程式组成的固定点方程式系统, 使得人们能够表达一系列核查任务, 如模型检查各种规格逻辑或检查硬体行为等同性。 在本文中, 我们为抽象解释式的固定点方程式系统开发了近似理论: 某个具体域的系统被抽成一个在适当抽象域的系统中的系统, 条件是确保抽象的解决方案代表了混凝土解决方案的健全/ 完全过合。 有趣的是, 技术, 在硬体环境中使用的经典方法, 以获得更容易或可行的证明, 可以被解释为抽象的, 其方式自然地适合我们的框架, 延伸至方程式系统。 此外, 依靠近似理论, 我们可以提供固定点方方程式系统解决方案的特征, 而不是完全的固定点方程式, 以合适的平价游戏为特征, 概括一些最近的工作, 仅限于连续的固定方程式。 游戏视图打开了发展方程式的路径 。