In game theory, mechanism design is concerned with the design of incentives so that a desired outcome of the game can be achieved. In this paper, we study the design of incentives so that a desirable equilibrium is obtained, for instance, an equilibrium satisfying a given temporal logic property -- a problem that we call equilibrium design. We base our study on a framework where system specifications are represented as temporal logic formulae, games as quantitative concurrent game structures, and players' goals as mean-payoff objectives. In particular, we consider system specifications given by LTL and GR(1) formulae, and show that implementing a mechanism to ensure that a given temporal logic property is satisfied on some/every Nash equilibrium of the game, whenever such a mechanism exists, can be done in PSPACE for LTL properties and in NP/$\Sigma^{P}_{2}$ for GR(1) specifications. We also study the complexity of various related decision and optimisation problems, such as optimality and uniqueness of solutions, and show that the complexities of all such problems lie within the polynomial hierarchy. As an application, equilibrium design can be used as an alternative solution to the rational synthesis and verification problems for concurrent games with mean-payoff objectives whenever no solution exists, or as a technique to repair, whenever possible, concurrent games with undesirable rational outcomes (Nash equilibria) in an optimal way.
翻译:在游戏理论中,机制设计涉及奖励的设计,以便实现游戏的预期结果。在本文件中,我们研究奖励的设计,以便达到理想的平衡,例如,达到一个满足特定时间逻辑属性的平衡 -- -- 我们称之为平衡设计的问题。我们的研究基于一个框架,在这个框架中,系统规格被表述为时间逻辑公式,游戏作为数量并行游戏结构,以及参与者的目标作为平均收益目标。我们尤其认为,LTL和GR(1)公式给出的系统规格,并表明,实施一个机制,确保某种/每一个游戏的纳什平衡满足特定时间逻辑属性,只要存在这种机制,就可以在PSPACE中为LTL属性实现某种/每个纳什平衡,而NP/$\\Sigma ⁇ P ⁇ 2}作为平衡。我们还研究各种相关决定的复杂性和选择目标,例如解决方案的最佳性和独特性,并表明所有这些问题的复杂性都存在于多元等级之内。 作为一种应用,只要在合理合成和合理核实游戏的结果方面,只要存在理性的解决方案,平衡设计可以作为一种替代方法,只要在合理合成或合理核实结果方面,就可用作一种合理合成和合理平衡技术的替代方法。