Linear diagrams are used to visualize set systems by depicting set memberships as horizontal line segments in a matrix, where each set is represented as a row and each element as a column. Each such line segment of a set is shown in a contiguous horizontal range of cells of the matrix indicating that the corresponding elements in the columns belong to the set. As each set occupies its own row in the matrix, the total height of the resulting visualization is as large as the number of sets in the instance. Such a linear diagram can be visually sparse and intersecting sets containing the same element might be represented by distant rows. To alleviate such undesirable effects, we present LinSets.zip, a new approach that achieves a more space-efficient representation of linear diagrams. First, we minimize the total number of gaps in the horizontal segments by reordering columns, a criterion that has been shown to increase readability in linear diagrams. The main difference of LinSets.zip to linear diagrams is that multiple non-intersecting sets can be positioned in the same row of the matrix. Furthermore, we present several different rendering variations for a matrix-based representation that utilize the proposed row compression. We implemented the different steps of our approach in a visualization pipeline using integer-linear programming, and suitable heuristics aiming at sufficiently fast computations in practice. We conducted both a quantitative evaluation and a small-scale user experiment to compare the effects of compressing linear diagrams.


翻译:线条图用于将设定的系统直观化,在矩阵中将设定的成份描述成横向线条部分,每个组的成份以行表示,每个组的成份以列表示,每个组的成份以纵列表示。每组的线条部分在矩阵的毗连水平单元格中显示,列中的相应元素属于集。每组的成份在矩阵中占据了自己的行,因此,由此得出的可视化总高度与当量数相同。这种线条图可以是视觉稀疏的,包含相同元素的互交组可能由远行表示。为了减轻这种不可取的影响,我们提出 LinSets.zip,这是一套新办法,使线条图的每个成份数在矩阵图的相近水平上得到更高效的显示。首先,我们通过重新排列列列,将横向部分的缺缺缺的总数减少到线条数。 LinSets.zip 与线性图表的主要区别是,许多非互交组可以由远行代表。此外,为了减轻这种不相交的组,我们提出一些不同的变变的新的新办法,在矩阵的直线条形图中,我们使用的直径线条图中采用了的直径线条路路路路路路路路路路路,我们用的直路行的定的直路面的直路路面的定的直路,我们行的直路面的直路面图,我们行的直路面图,我们行的直路行将的直路路路路路路路路路路路路路路路路路路路,在行的定的定的直路面图,我们行进行着的直路面图,在行的直路面图上行,我们行的直路面图,我们行的直路行的直路面图上行的直路面图,我们行将的直路面图,我们行的直路面图,我们行,我们用的直路行,我们用定的直径直径直路行的直路行的直路面的直路行的直行的直行的直路的直路的直路的直路行,我们行的直路面图。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
119+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员