Extensible objects form a challenging case for NRSfM, owing to the lack of a sufficiently constrained extensible model of the point-cloud. We tackle the challenge by proposing 1) convex relaxations of the isometric model up to quasi-isometry, and 2) convex relaxations involving the equiareal deformation model, which preserves local area and has not been used in NRSfM. The equiareal model is appealing because it is physically plausible and widely applicable. However, it has two main difficulties: first, when used on its own, it is ambiguous, and second, it involves quartic, hence highly nonconvex, constraints. Our approach handles the first difficulty by mixing the equiareal with the isometric model and the second difficulty by new convex relaxations. We validate our methods on multiple real and synthetic data, including well-known benchmarks.
翻译:扩展物体对NRSfM构成一个具有挑战性的例子,因为缺乏一个足够有限的扩展点模型。我们应对这一挑战,提出:(1) 将等离子模型的松绑放松到准同位素测量,(2) 将等离子变形模型的松绑放松到准同位素测量,以及(2) 将等离子变形模型的松绑松绑,这保留了局部地区,没有在NRSfM中使用过。 equialal模型具有吸引力,因为它在物理上是可信的,而且广泛适用。然而,它有两个主要困难:第一,它本身使用时是模糊的,第二,它涉及四分法,因此高度非convex限制。我们的方法处理第一个困难是将等离子变形模型与异谱模型混合,第二个困难是新的convex放松。我们验证了我们关于多种真实和合成数据的方法,包括众所周知的基准。