Household robots operate in the same space for years. Such robots incrementally build dynamic maps that can be used for tasks requiring remote object localization. However, benchmarks in robot learning often test generalization through inference on tasks in unobserved environments. In an observed environment, locating an object is reduced to choosing from among all object proposals in the environment, which may number in the 100,000s. Armed with this intuition, using only a generic vision-language scoring model with minor modifications for 3d encoding and operating in an embodied environment, we demonstrate an absolute performance gain of 9.84% on remote object grounding above state of the art models for REVERIE and of 5.04% on FAO. When allowed to pre-explore an environment, we also exceed the previous state of the art pre-exploration method on REVERIE. Additionally, we demonstrate our model on a real-world TurtleBot platform, highlighting the simplicity and usefulness of the approach. Our analysis outlines a "bag of tricks" essential for accomplishing this task, from utilizing 3d coordinates and context, to generalizing vision-language models to large 3d search spaces.


翻译:家用机器人在同一个空间运行多年。 这样的机器人会逐步建立动态地图, 可用于需要远程天体定位的任务。 但是, 机器人学习的基准往往通过在未观测的环境中对任务进行推断来测试一般化。 在观测的环境中, 定位对象会从环境中的所有物体提案中做出选择, 数量可能为10万个。 带有这种直觉, 仅使用通用的视觉语言评分模型, 对3个编码进行微小修改, 并在一个包含式环境中操作, 我们展示了9. 84%的绝对性能收益, 超过ReverIE的艺术模型的状态, 以及粮农组织的5. 04%。 当允许对一个环境进行预爆之前, 我们也会超过ReverIE的艺术勘探前方法的先前状态。 此外, 我们在真实世界的TurtBot平台上展示我们的模型, 突出该方法的简单性和有用性。 我们的分析概述了完成这项任务的“ 骗局”, 从使用3D坐标和背景, 到将视觉模型推广到大型3D搜索空间, 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员