Arbitrary neural style transfer is a vital topic with great research value and wide industrial application, which strives to render the structure of one image using the style of another. Recent researches have devoted great efforts on the task of arbitrary style transfer (AST) for improving the stylization quality. However, there are very few explorations about the quality evaluation of AST images, even it can potentially guide the design of different algorithms. In this paper, we first construct a new AST images quality assessment database (AST-IQAD), which consists 150 content-style image pairs and the corresponding 1200 stylized images produced by eight typical AST algorithms. Then, a subjective study is conducted on our AST-IQAD database, which obtains the subjective rating scores of all stylized images on the three subjective evaluations, i.e., content preservation (CP), style resemblance (SR), and overall vision (OV). To quantitatively measure the quality of AST image, we propose a new sparse representation-based method, which computes the quality according to the sparse feature similarity. Experimental results on our AST-IQAD have demonstrated the superiority of the proposed method. The dataset and source code will be released at https://github.com/Hangwei-Chen/AST-IQAD-SRQE
翻译:任意的神经风格传输是一个至关重要的主题,具有巨大的研究价值和广泛的工业应用,它努力利用另一种风格使一个图像的结构成为一个图像的结构。最近的研究在任意风格传输(AST)的任务上投入了大量努力,以提高标准化质量。然而,很少有关于AST图像质量评估的探索,甚至它可以指导不同算法的设计。在本文中,我们首先建立一个新的AST图像质量评估数据库(AST-IQAD),由150个内容式图像配对和由8种典型的AST算法制作的1200个相应的平板化图像组成。然后,在我们的AST-IQAD数据库上进行一项主观研究,该数据库在三种主观评价(即内容保护(CP),风格相似(SR)和总体视觉(OV)上获得所有标准化图像的主观评级分数。为了量化AST-IQ图像的质量,我们提出了一种新的稀薄代表基方法,根据稀薄特征对质量进行描述。我们AST-IAQ 实验结果将显示我们AD/Q 数据源的高级。