We present the lowest-order hybridizable discontinuous Galerkin schemes with numerical integration, denoted as HDG-P0, for the reaction-diffusion equation and the generalized Stokes equations in two- and three-dimensions. Here by lowest order, we mean that the (hybrid) finite element space for the global HDG facet degrees of freedom (DOFs) is the space of piecewise constants on the mesh skeleton. We give the optimal a priori error analysis of the proposed HDG-P0 schemes, which hasn't appeared in the literature yet for HDG discretizations as far as numerical integration is concerned. Moreover, we propose optimal geometric multigrid preconditioners for the statically condensed HDG-P0 linear systems. In both cases, we first establish the equivalence of the statically condensed HDG system with a (slightly modified) nonconforming Crouzeix-Raviart (CR) discretization, where the global (piecewise-constant) HDG finite element space on the mesh skeleton has a natural one-to-one correspondence to the nonconforming CR (piecewise-linear) finite element space that live on the whole mesh. This equivalence then allows us to use the well-established nonconforming geometry multigrid theory to precondition the condensed HDG system. Numerical results in two- and three-dimensions are presented to verify our theoretical findings.
翻译:我们展示了最低顺序混合的混合不连续 Galerkin 计划, 其数值集成, 被称为 HDG- P0, 用于反应扩散方程式和二维和三维方位的通用斯托克斯方程式。 在这里, 我们以最低顺序表示, 全球 HDG 面自由度( DOFs) 的( 混合的) 有限元素空间是网状骨上一个不相容的常数空间。 我们对拟议的HDG- P0 计划进行了最理想的先验错误分析, 就数字集成而言, HDG- P0 计划尚未出现在文献中。 此外, 我们为静态压缩的 HDG- P0 线系统提出了最佳的几何数多格先决条件。 在这两种情况下, 我们首先将静态压缩的HDGDG系统与一个( 稍稍修改的) 不对齐的 Crouzix- Raviart (CR) 分解空间分解, 其中全球( 最原始的) HDDG- DG 定点空间主机库中, 有两个自然的一对立至一对等的多直线,, 使不固定的系统对等定的MDFDF 能够对等的M 使整个的MDFDG( 和整个的系统对等的自动的对等正正。