We propose and analyze a first-order finite difference scheme for the functionalized Cahn-Hilliard (FCH) equation with a logarithmic Flory-Huggins potential. The semi-implicit numerical scheme is designed based on a suitable convex-concave decomposition of the FCH free energy. We prove unique solvability of the numerical algorithm and verify its unconditional energy stability without any restriction on the time step size. Thanks to the singular nature of the logarithmic part in the Flory-Huggins potential near the pure states $\pm 1$, we establish the so-called positivity-preserving property for the phase function at a theoretic level. As a consequence, the numerical solutions will never reach the singular values $\pm 1$ in the point-wise sense and the fully discrete scheme is well defined at each time step. Next, we present a detailed optimal rate convergence analysis and derive error estimates in $l^{\infty}(0,T;L_h^2)\cap l^2(0,T;H^3_h)$ under a mild CFL condition $C_1 h\leq\Delta t\leq C_2 h$. To achieve the goal, a higher order asymptotic expansion (up to the second order temporal and spatial accuracy) based on the Fourier projection is utilized to control the discrete maximum norm of solutions to the numerical scheme. We show that if the exact solution to the continuous problem is strictly separated from the pure states $\pm 1$, then the numerical solutions can be kept away from $\pm 1$ by a positive distance that is uniform with respect to the size of the time step and the grid. Finally, a few numerical experiments are presented to demonstrate the accuracy and robustness of the proposed numerical scheme.


翻译:我们为功能化 Cahn- Hilliard (FCH) 方程式提出并分析一阶定值差异方案。 半隐含数字方案的设计基于FCH 自由能量的合适的 convex- concave 分解。 我们证明数字算法的独特可溶性, 并核查其无条件的能源稳定性, 不受时间步数的限制 。 由于在纯状态附近的 Floriy- huggins (FCH) 方程式的对数部分的奇特性质, 我们为阶段函数设定了所谓的正态- pm 1 $ 。 我们为级函数设定了所谓的正态- pm 1 软化- hugggins 方程式保存属性 。 因此, 数字解决方案将永远无法达到点感奇值$\ pm 1, 完全离差值的公式将显示为 $@ infty introfty fty} (0, T;; L_h/2\\\\\\\\\\\\\\\ cap creal deal deal deal deal deal deal deal deal deal deal deal deal deal deal) as the a mal deal deal deal a mal a mal demod the a.

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员