Quantum annealing (QA) and Quantum Alternating Operator Ansatz (QAOA) are both heuristic quantum algorithms intended for sampling optimal solutions of combinatorial optimization problems. In this article we implement a rigorous direct comparison between QA on D-Wave hardware and QAOA on IBMQ hardware. The studied problems are instances of a class of Ising problems, with variable assignments of $+1$ or $-1$, that contain cubic $ZZZ$ interactions (higher order terms) and match both the native connectivity of the Pegasus topology D-Wave chips and the heavy hexagonal lattice of the IBMQ chips. The novel QAOA implementation on the heavy hexagonal lattice has a CNOT depth of $6$ per round and allows for usage of an entire heavy hexagonal lattice. Experimentally, QAOA is executed on an ensemble of randomly generated Ising instances with a grid search over $1$ and $2$ round angles using all 127 programmable superconducting transmon qubits of ibm_washington. The error suppression technique digital dynamical decoupling (DDD) is also tested on all QAOA circuits. QA is executed on the same Ising instances with the programmable superconducting flux qubit devices D-Wave Advantage_system4.1 and Advantage_system6.1 using modified annealing schedules with pauses. We find that QA outperforms QAOA on all problem instances. We also find that DDD enables 2-round QAOA to outperform 1-round QAOA, which is not the case without DDD.
翻译:QAOA 和 Quantum annealing (QAA) 和 Quantum Alterning 操作员 Ansatz (QAOA), 两者都是用于取样组合优化问题的最佳解决方案的超量量量算算算法。 在此文章中, 我们对D- Wave 硬件和 IBMQ 硬件的 QAOA 进行严格的直接比较。 所研究的问题是, 某类Ising问题, 分配额为+1美元或1美元, 包含立方1美元或1美元(不是高单价条件)的相互作用, 并且匹配 Pegasus 顶层D- Wave 的本地连接; 2A- Wave 芯片和 IBMQ 芯片的重六角拉特。 重六角形的QAAOOOA 执行额A 新的QOOOAAAA 深度, 允许使用整个重六角色的DDD 。 实验, QAA 在一个随机生成的电路中, 我们对1美元和2美元的电路段进行升级的自动测试。